El perfil de un Ingeniero de confiabilidad

Introducción

Después de casi cuarenta años ejerciendo de una u otra forma como ingeniero de confiabilidad, he podido extraer mis propias conclusiones sobre cuales son las cualidades que se le deben exigir a los ingenieros que ejercen esta disciplina o aquellos que pretenden dedicarse a ella. Creo que las funciones del departamento de confiabilidad se pueden dividir en varias actividades todas ellas complejas. Pero por resumirlas en dos grandes bloques podríamos decir que uno de ellos englobaría todo lo referente a la gestión de activos (norma ISO55000) y por otro lado todo lo referente a la Confiabilidad que también está incluido en esta norma pero de una manera más liviana. Estos dos grandes grupos están ligados uno al otro con fuerza y uno sin el otro en razón de la ingeniería y el mantenimiento no tienen sentido. Este es el motivo por el que, contar con especialistas que sean expertos en estas disciplinas y que además sean capaces de compaginar el trabajo de estos bloques junto con el sistema de mantenimiento de su planta a pie de máquina es muy complicado.

Quizás por este motivo es difícil que empresas de pequeño, medio e incluso gran tamaño encuentren a las personas idóneas para acometer esta función, sin dedicar antes mucho tiempo y dinero en su formación tanto interna como externa. En este artículo intentaré explicar por qué pienso esto usando mi propia historia y experiencia.

Historia y experiencia

Recuerdo que mi primer contacto con lo que se podría llamar un departamento de confiabilidad, entre comillas, fue cuando en la primera empresa para la que trabajaba, alguien de su alta dirección con buen criterio, decidió comenzar a crear este departamento de confiabilidad dentro de una de sus plantas. Yo, en aquel momento de mi vida ni tan siquiera había oído hablar de que se trataba el trabajo, pero de alguna manera fui elegido para dicha misión. Hay que tener en cuenta que estamos hablando de los años 80 cuando los ordenadores eran meramente decorativos y todavia los equipos de medida predictiva estaban en pañales y eran aparatos completamente manuales y rudimentarios, la informática estaba empezando a entrar en las empresas y era de poquísima utilidad.

¿Cuáles eran mis capacidades en aquel momento de mi vida? Honestamente creo que ninguna, yo sólo era especialista en maquinas industriales, conocía a la perfección y había intervenido en la mecánica de cualquier tipo de maquinaría, desde un simple motor eléctrico, una reductora o una bomba a equipos muy complejos como turbo generadores de vapor de centenares de megavatios, y nada más, o quizás debo añadir «y nada menos», por que hoy por hoy me alegro muchísimo de aquel comienzo y de la experiencia que me aportó.

Hasta entonces, el mantenimiento en aquella empresa era un mantenimiento puramente correctivo con algún escarceo en preventivo pero sin más importancia que la de un mero engrase o cosas similares, y fue duro, muy duro implantar un departamento que cambiaría las reglas de juego en adelante y más aún cuando incluso para la dirección aquello no era más que una ocurrencia que según lo que percibí pensaron que seguramente acabaría derrumbándose por si sola. En aquella empresa y en aquel momento, nadie contaba con el éxito de la nueva herramienta, salvo yo, que naturalmente quería a toda costa que todo aquello llegara a buen puerto, por mi bien y por el futuro de aquel nuevo sistema.

Algunos años después y con multitud de horas de formación en confiabilidad, en técnicas predictivas y de gestión de activos, el departamento empezó a cambiar la forma de trabajo de toda la planta y a partir de ahí todo fueron triunfos y aciertos en las decisiones que fuimos tomando y finalmente el departamento se exportó al resto de factorías de la empresa, aún cuando todavia contaba con una fuerte oposición y resistencia de los ingenieros al mando de los distintos departamentos de mantenimiento que creían que peligraban sus decisiones o sus puestos de trabajo. Por eso es tan importante que todo el mundo este implicado en este cambio, desde arriba hasta abajo, toda la empresa debe asumir las normas para que un cambio de este tipo triunfe y sea efectivo desde el primer día, para no jugar con la angustia de unos pocos contra las reticencias de otros tantos.

Un par de años después el departamento de confiabilidad era una realidad en las 8 plantas de la empresa y con no muy malos resultados, aunque tuvieron que pasar bastantes años más para que la empresa tuviese una verdadera política y liderazgo de gestión de activos y un verdadero departamento de confiabilidad.

Un ejemplos para entender la labor del ingeniero de confiabilidad

Hecha esta introducción explicaré como creo yo que debe ser el perfil de un ingeniero de confiabilidad.

Siempre me ha gustado la analogía de dos profesiones que aunque muy distintas y distantes entre sí, si que son cercanas en cuanto a su forma de trabajo, y me refiero a la comparación de un ingeniero de la confiabilidad con la de un médico internista en un hospital, salvando debidamente las distancias y sin que esta comparación pueda ofender a nadie. Y es que aunque parezca algo inverosímil ambas profesiones comparten muchas similitudes.

En la revista Predictiva21 hay un artículo muy bueno de José Arquímedes Ferrera en el que con ingenio desarrolla un analogía similar a la que yo mismo he descrito en alguno de mis artículos y pretendo desglosar aquí. Y es que, el médico internista tras una serie de pruebas hace un diagnostico de los pacientes más complejos a los que ha derivado el médico de cabecera. Es evidente, que los médicos internistas son pues los expertos a quienes recurren los médicos de atención primaria y el resto de especialistas para atender a enfermos complejos cuyo diagnóstico es difícil, que se encuentran afectados por varias enfermedades o que presentan síntomas en varios órganos. Y añado, el medico internista además dispone de instrumental de análisis más complejo que están a su servicio para detectar los posibles problemas que aquejan al paciente.

No me resisto a presentar una tabla de ese mismo artículo donde se reproduce esta comparativa de forma bastante elocuente sobre lo que queremos decir:

Médico InternistaIngeniero de Confiabilidad
Debe tener una visión holística y de
conjunto
Debe tener una concepción basada en la integración
total y global y analiza los eventos desde el punto de
vista de las múltiples interacciones que los caracterizan.
Super-especialista: tiene la capacidad
de identificar el problema y tratarlo la
mayoría de las veces, no esta limitado a
un solo órgano, aparato o sistema, por
ejemplo, el dolor torácico, puede tener
origen cardiaco, pulmonar, esofágico,
osteomuscular y neuropático, entonces
¿Quién es el indicado para abordar el
problema?
Para mí este punto resumen casi todo, igualmente el
ingeniero de confiabilidad debe ser Super-especialista al
analizar los problemas o fallas de equipos, pues en las
mayorías de los casos una falla puede tener varias
causas. Un ejemplo es cuando realizamos los análisis de
causa raíz o causa efectos, podemos ver que una alta
temperatura de aceite lubricante de una turbina puede
tener origen desde el enfriador, el tipo de aceite, las
condiciones ambientales, las bombas, el proceso, etc.
Áreas de Capacitación EspecíficaAunque actualmente existen diferentes centros de
enseñanza que otorgan la titulación específica, la
formación de un ingeniero de confiabilidad va más allá.
Debe tener experiencia y conocimientos, así como una
formación específica en las diferentes metodologías y
herramientas disponibles para realizar los análisis y/o
diagnósticos requeridos.
Atiende globalmente al pacientePara cumplir con este objetivo, el ingeniero de
confiabilidad debe saber manejar las diferentes
metodologías de análisis y tener el conocimiento técnico
básico en diferentes áreas o disciplinas.
Comparativa figurada entre Médico internista e Ingeniero de confiabilidad

En definitiva el resumen de todo esto es que los Ingenieros de Confiabilidad deben ser por un lado expertos en la gestión de activos industriales, encargados de su gestión, de su mantenimiento, de su compra o reemplazo, de la plantificación de las reparaciones etc. etc. Por otro lado tienen una misión mucho más compleja, porque deben ser las personas responsable de la confiabilidad de planta, de la fiabilidad de los equipos a los cuales deben conocer a la perfección y dominar todas las técnicas para el diagnostico precoz de sus modos de falla. Son a quienes normalmente recurren los ingenieros y técnicos de mantenimiento que están en el día a día con los equipos para atender problemas complejos de aquellos equipos con un diagnóstico difícil o para detectar aquellas causas de fallo que todavia nadie a visto. Dicho esto, y por mi experiencia llego a la conclusión de que esta segunda parte puede ser realizada por empresas de expertos en el mantenimiento predictivo y la confiabilidad que facilitarán enormemente esta parte del trabajo al ingeniero de confiabilidad de planta. (Terotecnic)

Siempre merece la pena tener un departamento o a una persona (dependiendo de la cantidad de activos de la planta) que se dedique a la gestión de la confiabilidad de la planta preferiblemente apoyándose en una empresa experta en la materia para ayudarle sobre todo en la parte correspondiente al mantenimiento predictivo, que es la parte donde es necesaria una continua inversión en equipos y conocimiento.

Funciones de un departamento de confiabilidad

Hemos comentado cual debe ser el perfil de un ingeniero de confiabilidad y hemos llegado a la conclusión que debe ser una persona formada en ingeniería, que además tenga formación especifica en todas las herramientas de fiabilidad y predictivo, análisis de vibración, ultrasonidos, termografía, análisis de aceites, de corrientes eléctricas, de redes, de instrumentación y además conocedor de todo tipo de equipos mecánicos y eléctricos, sus funciones, su funcionamiento, su mecánica y por último y no menos importante conocedor del trabajo de la industria para la que trabaja, de su funcionamiento, de su producción, de la estructura jerárquica y organizativa, de las herramientas informáticas que la empresa utilice incluido su GMAO, así como conocer los objetivos estratégicos de su organización. Poseer las habilidades necesarias que le permitan entender el aporte de sus funciones al logro de los objetivos de la organización y entender cómo las metas de mantenimiento y confiabilidad soportan los objetivos estratégicos de cualquier organización industrial.

¡Mucho parece verdad! Pues todo eso es necesario y lo que ocurre muchas veces es que cuando se ha formado al candidato idóneo y crees que ya puede liderar el departamento de tu planta, este encuentra un trabajo que considera mejor y se marcha.

Dicho esto, describiremos ahora las funciones de un departamento de confiabilidad:

1 º Definir la estructura jerárquica de los activos de planta.

Normalmente ésta es una tarea que suele estar ya realizada en la empresa por su propia estructura funcional o de producción pero aún así el gestor de mantenimiento y/o el departamento de confiabilidad deberán establecer y desarrollar un orden jerárquico y una codificación taxonómica para los activos de la planta. Si aún no está hecho este orden, este es un punto de vital relevancia que debe ser el punto de partida de cualquier otro trabajo. Los datos de confiabilidad necesitan ser relacionados con cierto nivel dentro de la jerarquía de los equipos a fin de que sean significantes agrupables y comparables, por eso este árbol de activos debe tener como nivel básico el número «KKs» con el que se identificará cada elemento de la planta o si no lo tiene el ingeniero de confiabilidad deberá generarlo para toda la planta. En esta tarea se debe definir el nivel más alto de la clase de los activos, el número de niveles para la sub-división que dependerá de la complejidad de la unidad de activos y del uso que se le dará a los datos.

2º Gestionar la base de datos de los activos.

Una vez generadas las ubicaciones técnicas de planta, el siguiente trabajo será introducir los equipos en cada una de ellas, teniendo en cuenta que un equipo o activo es un ente particular con una matricula unas características y una documentación que son desmontables de una ubicación técnica y montable en otra o desechable cuando haya llegado el fin de su vida útil. Por tanto, el gestor del mantenimiento o el ingeniero de confiabilidad deben establecer los requerimientos para llevar a cabo la gestión de los datos e información del mantenimiento y que la información registrada sea confiable,  de modo que esto le permita el desarrollo de las estrategias de mantenimiento de forma eficaz, para ello es necesario disponer de la información técnica requerida de todos los activos incluyendo manuales, catálogos, datos de adquisición, ubicaciones, activos, componentes y repuestos.

3º Liderar el desarrollo del análisis de criticidad de los activos de planta.

Otra de las labores del ingeniero de confiabilidad de la planta es el de generar un análisis de criticidad de toda la planta que le permita a la organización establecer la  jerarquía o prioridad de los equipos a la hora de recibir atención o mantenimiento, creando así una estructura que facilite la toma de decisiones acertadas y efectivas, y que además permita direccionar el esfuerzo y los recursos a las áreas donde es más importante y/o necesario mejorar la confiabilidad y administrar el riesgo.

4º Generar los planes de mantenimiento de los activos.

El Ingeniero de Confiabilidad tiene la responsabilidad de generar una adecuada estrategia de mantenimiento para cada activo, adaptada al contexto operacional y utilizando como elementos de entrada y soporte el análisis de criticidad, información del fabricante, la experiencia con activos similares en otras operaciones planes de mantenimiento y cuando se disponga de datos propios, registros históricos suficientes y confiables, éstos deben servir de insumo para adecuar los planes de mantenimiento, basados en las tendencias propias de cada activo.

Además, el Ingeniero de Confiabilidad debe hacer uso de herramientas como el Análisis de Modo de Efecto y Falla (FMEA), para adecuar los planes a los modos de fallas particulares de cada activo.

5º Implementar y gestionar el programa de Mantenimiento Predictivo.

Como responsable del desarrollo de la estrategias de mantenimiento, el Ingeniero de Confiabilidad, debe generar e implementar los programa de monitoreo por condición, también llamados programa de mantenimiento predictivo. Para ello es necesario tener en cuenta la criticidad que le ha marcado a cada equipo y por supuesto conocer los modos de fallo típicos de cada equipo para definir la estrategia predictiva que mejor se anticipe a su fallo potencial. Además, debe definir el flujo de datos recolectados y de qué forma serán empleados para por un lado llevar a cabo la ejecución de las recomendaciones y por otro retroalimentar los planes de mantenimiento para su optimización. Hoy por hoy el total de estas tareas suele ser encomendado a una empresa especializada como Terotecnic Ingeniería. Empresas con un flujo de clientes tal que son perfectos conocedores de todo tipo de industrias y pueden hacer esta labor con muy poco margen de error.

6º Desarrollar análisis estadístico para optimizar los planes de mantenimiento.

Otro de los cometidos del Ingeniero de confiabilidad es la implementación y aplicación de herramientas que permitan el análisis estadístico de las fallas, con lo que se podrá determinar las frecuencias óptimas de inspección, las adecuación necesarias de los planes de Mantenimiento, así como prever una política de reemplazo de los activos y componentes.

7º Implementar un programa de Análisis Causa Raíz.

Los programas de Análisis Causa Raíz son una herramienta fundamental en la eliminación de problemas o fallas tanto crónicas como esporádicas. El Ingeniero de Confiabilidad tiene la responsabilidad de liderar los equipos de trabajo para llevar a cabo el desarrollo de los planes y programas de ACR,  actuando como facilitador de las reuniones de análisis y como responsable del seguimiento de las acciones propuestas, producto del análisis del problema, para luego proceder a evaluar los beneficios del programa.

En el caso de averías de equipos donde un ACR de grupo no sea necesario, el ingeniero de confiabilidad será el responsable de la realización de este análisis. Como ejemplo, muchos de aquellos que se derivan del análisis de las averías detectadas durante los análisis de mantenimiento predictivo de las cuales se deberán extraer conclusiones fehacientes para determinar cual fue la causa raíz que ocasiono el inicio de la falla funcional y eliminarla definitivamente.

8º Liderar la implementación de planes de Mantenimiento Centrado en Confiabilidad.

El RCM es una de las herramientas metodológicas para optimizar la gestión y planes de mantenimiento, por lo que el Ingeniero de Confiabilidad es el profesional llamado a ser el líder en los equipos de trabajo para llevar a cabo la implementación de los mismos, debido a su visión holística y sistémica del negocio. RCM es el mantenimiento basado en la confiabilidad y por tanto es el mantenimiento que liderará el ingeniero de confiabilidad. Esto conlleva así mismo dedicarse a la realización y gestión del análisis RAMs del que hablaremos en un próximo artículo.

Resumen

Este artículo no trata de sentar las bases para elegir el perfil del Ingeniero de confiabilidad, ni de establecer ningún estándar en cuanto a sus funciones y las de su departamento, sólo he tratado de resaltar aquellas funciones mínimas necesarias para este perfil para que las personas que crean que quieren o pueden optar a completar su formación en esta disciplina o las empresas que andan buscándolo, tengan una primera pincelada de las mismas.

Referencias

Predictiva21 (artículo sobre el perfil del Ingeniero de confiabilidad de José Arquímedes Ferrera Martínez)

Reportero Industrial (artículo sobre el departamento de confiabilidad de Aléxis Lárez)

Guillermo Díaz Povedano
Guillermo Díaz Povedano

Director de Terotecnic Ingeniería, S.L.

Método 8D para la resolución de problemas

Con el año tan caótico que hemos vivido y los que quizás nos quede por vivir en la pequeña y mediana empresa mejor será prepararse. Desde Terotecnic no podemos ayudarle a resolver sus problemas en su día a día aunque nos gustaría, pero si que creemos que podemos ayudarle a gestionarlos mejor. Por eso hemos escrito este artículo sobre la aplicación del método 8D para la resolución de problemas en la empresa, esperamos que le guste.

Método 8D, definición

El método 8D es una metodología para la resolución de problemas que todo equipo de dirección debe tener sobre su mesa. Básicamente se trata de conformar un equipo “competente” para resolver los problemas que surjan siguiendo un proceso de análisis y toma de decisiones estructuradas en 8 pasos, focalizándose en los hechos (objetividad) y no en las opiniones (subjetividad).

Un poco de Historia

Durante la Segunda Guerra Mundial, el gobierno de Estados Unidos, para resolver problemas en las líneas de producción implementó una metodología para el control de las desviaciones y las no conformidades de los productos terminados, denominándola Military Standard 1520, que también se conoce como (Corrective Action and Disposittion System for Noconnforming Material) «Acción correctiva y sistema de disposición para material no conforme».
La metodología 8D, tal y como hoy la conocemos, la documentó la empresa Ford Motor Company en 1987 quien aplicó esta disciplina a sus líneas de producción, pero antes de esto, está disciplina pasó por muchas revisiones y modelos intermedios: entre los 60 y 70 hubo un D4 que también se le llamó Team Oriented Problem Solving, también hubo un D7 hasta que a finales de la década de los 90, Ford creó y aprobó una nueva versión del 8D, denominada oficialmente como “Global 8D” (G8D), que sirve como estándar actual en esta empresa y en muchas otras compañías que como ésta necesitan de un método estructurado para la resolución de sus problemas.

Si su empresa necesita iniciarse en este método, lea atentamente este artículo.

Preliminares

Antes de comenzar con G8D, debemos dejar claro que esto es un método para la resolución de problemas por lo que entender lo que es un problema es importante para evaluar si, iniciar las 8 disciplinas que engloba el G8D o no; un problema es un obstáculo, es algo que impide que las cosas sigan su curso normal, por tanto, es una diferencia entre una situación esperada y una situación real. Normalmente los problemas son originados por múltiples causas y en distintos niveles, G8D permite encontrar la causa raíz para poder dar una solución adecuada y definitiva a un problema concreto que normalmente es repetitivo en el tiempos.

En general se emplea G8D para la resolución de cualquier tipo de problema aunque entre las aplicaciones más usuales se encuentran:

  • Resolución de no conformidades de los clientes.
  • Resolución de reclamaciones de proveedores o clientes.
  • Solución de problemas que se presenten de manera repetitiva.
  • En la industria, incidentes o averías repetitivas.
  • Por necesidad de abordar problemas desde la visión de un grupo.

Disciplinas del método G8D

Las 8 disciplinas del G8D son las siguientes:

  • D1. Formación de un equipo de expertos que cubran todas las funciones.
  • D2. Definición integral del problema.
  • D3. Implementar y verificar una acción de contención provisional.
  • D4. Identificar y verificar la causa raíz.
  • D5. Determinar acciones correctivas permanentes, así como definir las acciones preventivas para evitar que un problema similar surja de nuevo.
  • D6. Implementar y verificar las acciones correctivas permanentes.
  • D7. Prevenir la recurrencia del problema y/o su causa raíz.
  • D8. Reconocer los esfuerzos del equipo.

D 1. Establecer el equipo

D 1-1 Creación del equipo

Crear un grupo pequeño y diversificado de personas con conocimiento del producto, del proceso o la función, que posean conocimiento en las áreas técnicas correspondientes y que cuenten con el tiempo y autoridad necesarios para tomar decisiones y acciones que resuelvan el problema.

D 1-2 Efectividad del equipo

Elegir al líder con las características ideales para este cometido. El líder será el que maneje toda la información referente al problema y mantendrá al resto de miembros informados además, será el responsable de que se cumplan los objetivos marcados por el grupo

El líder en cuanto al equipo debe:

  • Crear ambiente de seguridad y de cooperación, no de competencia.
  • Conseguir de los participantes el compromiso para trabajar para la consecución de la eliminación del problema.
  • Conseguir que las tareas necesarias y no las ambiciones personales, determinen los procedimientos.

En cuanto al trabajo a realizar el líder deberá:

  • Describir un enfoque específico sobre el problema.
  • Promover decisiones y metas realistas.
  • Explicar y resumir de modo claro, comprensible y breve tanto el problema como las resoluciones e ideas que se vayan introduciendo.
  • Debe ser inspirador y vigorizante en el caso de decaimiento del equipo.
  • Debe dar un sentido de dirección y de seguridad en la consecución de los objetivos.

D 2. Describir el problema

El propósito de esta disciplina es describir el problema partiendo de datos reales que hayan sido aportados por aquellos trabajadores que se encuentran directamente relacionados con el mismo. La descripción debe ser detallada pero concisa de manera que el problema sea conceptualizado y entendido por el grupo, el objetivo es definir el problema, dice un axioma que «un problema bien definido es un problema medio resuelto”. Aún así, hay que decir que muy pocas veces la descripción del problema hecha al inicio del 8D es totalmente completa y no requiere revisiones posteriores.

Esta descripción del problema debe dar una información completa, recogiendo datos como:

  • ¿Quién? (Who).
  • ¿Qué? (What).
  • ¿Cuándo? (When).
  • ¿Dónde? (Where).
  • ¿Por qué? (Why).
  • ¿Cuánto? (How much).
  • ¿Cómo? (How).

D 3. Acciones internas de contención

Implementar y verificar acciones contenedoras:

  • Definir e implementar acciones para contener y aislar el efecto del problema de cualquier cliente interno/externo, hasta que la acción correctiva sea implementada. esta solución debe ser probada y evaluada antes de implementarla.
  • Cuando sea aplicable, establecer acciones inmediatas, enmendar el problema: reparar, retrabajar, segregar, identificar para no utilizar, informar, cambiar o sustituir el producto; en caso de servicio, ofrecer otras alternativas para que se proporcione nuevamente, cómo reponerlo sin costo, etc.
  • Definir, implementar y verificar la efectividad de acciones temporales para aislar a los clientes del proceso del efecto del problema. Entendido como cliente no sólo los clientes de producto final sino todos aquellos activos o personas que se vean afectadas por el problema.

D 4. Definir y verificar la causa raíz

En esta disciplina trataremos de identificar las causa o causas potenciales que podrían haber ocasionado el problema o causa raíz del mismo. Por lo general, encontrar una causa raíz no es fácil, si lo fuese, este procedimiento no sería necesario; lo que ocurre en la mayoría de los casos es que los elementos cambiantes más a la vista no son siempre los verdaderos causantes del problema, y en muchas ocasiones cuando se analiza el problema en profundidad, se identifican unas posibles causas que a su vez están originadas por otras causas iniciales. La verdadera causa raíz se identifica al comprobar que tras su eliminación, el problema deja de existir definitivamente.

Para hallar la causa raíz del problema disponemos de una serie de herramientas que nos pueden ayudar a identificar las causas potenciales del mismo tales como:

Brainstorming, lluvia de ideas importante para G8D
  • Lluvia de ideas.
  • Análisis de tareas.
  • Análisis de barreras.
  • Análisis de cambios.
  • Diagrama de causa-efecto o diagrama de pescado.
  • Diagrama de árbol de fallos.
  • Diagrama de afinidad.
  • Diagrama de Pareto.
  • Los cinco por qué.

Verificación de las causas del problema es el momento de la comprobación de teorías:

  • Inventarios semanales.
  • Reducción de correctivos.
  • Confirmación de cantidades en sistema por muestreo.
  • Verificación de KPIs

D 5. Elegir y verificar las acciones correctivas permanentes (PCA)

Una vez encontrada la causa raíz, lo que corresponde es implementar las acciones correctivas para solucionar el problema. Estas acciones atacarán directamente contra la causa raíz o las causas si son varias. Si la causa es muy compleja habrá que elaborar también un programa que contenga:

  • Responsabilidades y responsables
  • Tiempo.
  • Recursos requeridos.
  • Retiro de las acciones de contención que fueron definidas inicialmente y elegir controles que aseguren que no se presente nuevamente la causa.
  • Si pueden utilizarse indicadores del proceso del servicio, reportes de desperdicios, de horas extra, etcétera.
  • Capacitación del personal.
  • Que el equipo confirme cuantitativamente que las acciones resolverán el problema para el cliente y no causarán efectos secundarios no deseados.
  • Evaluación objetiva de cada acción posible en relación con un criterio de decisión predeterminado, por parte del equipo.
  • Por parte del equipo, probar que la acción correctiva eliminará el problema conduciendo pruebas de verificación.

Si en la pruebas no se consiguen buenos resultados, se deberán buscar más causas del problema.

D 6. Implementar y validar las acciones correctivas permanentes

Ha llegado el momento de verificar que las acciones hayan sido las apropiadas para la eliminación de la causa raíz. Para la verificación de resultados habrá que establecer qué informaciones o estadísticas serán recopiladas y analizadas que contengan datos de antes y después de la verificación. También es importante prestar atención a los posibles efectos adversos que pudieran ser causados por las acciones tomadas.

D 7. Prevenir la repetición

Prevenir su reincidencia y documentar es el siguiente paso entre las disciplinas 8D; este paso consiste básicamente en evaluar la efectividad de las acciones emprendidas para eliminar el fallo, y observar que el problema no se vuelve a repetir, en caso de detectar que el problema se sigue presentando se establecerán otras acciones. Por otro lado, es primordial para esta metodología recopilar toda la información recopilada durante el proceso.

Para prevenir la ocurrencia se pueden usar algunas herramientas como AMFE, o análisis modal de fallos y efectos, un procedimiento de análisis de fallos potenciales en un sistema, clasificándolos por su gravedad o por el efecto de los fallos en el sistema; también se puede utilizar el sistema Poka-Yoke que se aplica con el fin de evitar errores en la operación de un sistema.

Debido a que los problemas iguales o similares presentan una tendencia a repetirse, cualquier disciplina para la prevención estará enfocada a la identificación y eliminación de:

  • Malas prácticas.
  • Mejora de los procesos.
  • Mejora de Diseños o rediseños.
  • Mejora o implementación de procedimientos (operativos o administrativos) que pudieran contribuir a que el problema se repita.
    • Procedimientos incorrectos o confusos.
    • Procedimientos no respetados.
    • Procedimientos inexistentes.
  • En deficiencias en el producto final adoptar medidas globales que incluyan a los clientes y proveedores.
  • En último extremo realizar un cambio de responsabilidades.

Las soluciones adoptadas en esta disciplina, normalmente son extrapolables a otras áreas de la planta, contribuyendo a solventar problemas similares rápida y efectivamente y de forma permanente, o simplemente previniendo su ocurrencia en otras áreas.

Es importante en este punto marcar un calendario de auditoría para asegurar que la solución implementada es totalmente efectiva y el problema se ha corregido definitivamente.

D8. Cerrar el problema y reconocer al equipo y las contribuciones individuales

El paso final de un esfuerzo de solución de problemas, orientado a trabajo de equipo, es reconocer los esfuerzos colectivos del equipo para la solución del problema y mostrar gratitud aplaudiendo las contribuciones individuales.

Ventajas:

  • Crea un buen ambiente para interacciones futuras.
  • Refuerza las fortalezas del trabajo en equipo.
  • Fortalece a la empresa.
  • Mejora la autoestima.
  • Contribuye al crecimiento profesional.
Guillermo Díaz Povedano
Guillermo Díaz Povedano

Director de Terotecnic Ingeniería, S.L.

Mantenimiento Predictivo y el análisis de vibración

En mantenimiento predictivo, el análisis de vibración de los equipos rotativos es uno de los pocos métodos, por no decir el único, que individualmente y sin el apoyo de otra técnica puede generar un diagnóstico fiable del estado de la máquina en tiempo real; esto no quiere decir que a veces no sea necesario apoyarse en otra tecnología para ratificar o verificar la causa de los síntomas que presenta, pero es habitual que en la mayoría de los casos no sea necesario. Esto es así porque este tipo de ensayo, se basa en el análisis de la frecuencias de vibración y su amplitud que se registra durante su funcionamiento. Frecuencias de vibración que son las únicas medidas físicas con entidad suficiente como para poder ser asociadas a los componentes que giran dentro del activo.

Cada vez son más y mejores los equipos de medida y software de análisis de estas variables físicas. Los fabricantes de este tipo de equipos han redoblado sus esfuerzos y están lanzando productos al mercado cada vez más sofisticados, más sensibles y mejor capacitados para la toma de datos y la interpretación de los mismos. El analista por tanto, encuentra cada vez más en estos productos una herramienta esencial para el desarrollo de su trabajo, que no es otro que detectar el comportamiento errático del equipo y anticiparse a la avería, tratando de encontrar con precisión la localización del punto exacto de la curva P-F que le llevará al acierto en su pronóstico tanto en el análisis, como en el tiempo previsto para su reparación.

CURVA DE CONFIABILIDAD DE LOS ACTIVOS

La curva P-F establece el punto más probable de falla dependiente del estado actual de la máquina. En la imagen anterior, se contempla toda la vida del activo desde que se contempla su compra atendiendo a su diseño y con las prestaciones exigibles para la función deseada, pasando por el «intervalo I-P» que es el intervalo de tiempo desde que el equipo se instala hasta el punto donde comienza la falla potencial, para finalizar con el «intervalo P-F» que es el que abarca desde el punto «P» donde comienza la posible falla potencial hasta que esta pasa a convertirse en una falla funcional «F» y posteriormente en una avería.

El intervalo P-F es el único en el que se puede actuar para alargar la vida útil del equipo y es donde el Ingeniero de Fiabilidad se debe parecer mucho a un médico de medicina general (salvando las debidas distancias) el médico analiza personas y el analista de vibración analiza máquinas. Llegados a esta comparación y por continuar con el mismo símil, hay que decir que en este mundo cada vez hay más curanderos y menos médicos en ambos trabajos. Es relativamente fácil acopiar datos de vibración y determinar si la máquina está bien o mal en un determinado momento de esa curva; pero eso no es mucho más de lo que haría un buen profesional que conozca la máquina y aprecie un fallo funcional en la misma.

Si todo quedase ahí, sería tanto como si una persona se encuentra a un amigo que se sujeta la cara con expresión de dolor y le dice.

–¿estas fastidiado con la boca? –fatal –responde el amigo- tengo la muela

–VE AL DENTISTA hombre…

¡Ya somos médicos! Hemos hecho una predicción basándonos en los rasgos externos de nuestro amigo y le hemos aportado una solución buena e inmediata. En el dentista está la clave…

Cualquiera puede anticiparse a un hecho, sobre todo cuando éste está próximo a su desenlace, que en definitiva parece ser el punto más adecuado para dar tal premonición según algunos criterios.

¿Pero qué hace un buen especialista? ¿qué hace un verdadero médico?

Se anticipa mucho al determinar que tipo de enfermedad puede sufrir el enfermo, si es necesario utiliza las herramientas que tiene a su alcance temperatura, análisis de sangre, radiografía o todas aquellas que crea razonablemente aceptables atendiendo a los primeros indicios de la enfermedad para ratificar su primer diagnostico, y si por último es necesario u oportuno busca la causa que le produjo esta enfermedad. ¿por qué? porque a veces, el conocimiento de esa causa evita que el enfermo la vuelva a padecer, o mejor aún si consigue que no la sufran personas que como él  hagan las mismas cosas o estén en el mismo ambiente lesivo.

¿Podemos ser un analista de vibración pero no ser un buen ingenieros de fiabilidad?

Sí podemos pero no es lo más adecuado. Podemos ser analistas de vibración y anticiparnos a la avería ¿pero cuanta anticipación? DEMASIADA, aconsejando reparar al inicio de la curva P-F, con lo cual podemos estar despilfarrando desmontando un equipo mucho antes de lo razonablemente aceptable bajo un análisis RCM, o DEMASIADO POCO, dejando sin tiempo al equipo de mantenimiento y operaciones para preparar la intervención, convirtiendo a la misma en poco más que una intervención de correctivo imprevisto, pura y dura.

Y además qué….

¿Hemos hecho algo más para cuidar a nuestro enfermo?

O directamente lo mandamos operar y caso terminado. Un especialista intentaría determinar que ha sido el causante de la enfermedad de la que se aqueja el enfermo, del mismo modo un analista de vibración debe dar junto con su predicción del fallo que aqueja a la máquina, un análisis más o menos concluyente de la causa raíz del problema. Qué le pasa al equipo y porqué le ha pasado, (esa última apreciación es importantísima), y una propuesta de corrección de dicha causa raíz.

EL ANÁLISIS DE CAUSA RAÍZ

La diferencia entre un equipo profesional y un curandero

Las herramientas de las que disponemos son muy avanzadas, pero las personas no solamente tienen que saber utilizarlas sino conocer a sus pacientes a fondo. Por lo tanto es de primordial importancia que el analista tenga siempre en mente los principios básicos de la vibración, un conocimiento muy avanzado de la máquina que va a medir así como de sus componentes y una técnica de aproximación adecuada al problema para poder dar un enfoque acertado de su análisis.

Al igual que los equipos para la toma de datos de vibración tanto on-line, como off-line cada vez son más sofisticados, los equipos productivos lo son igualmente, cada vez tienen más piezas móviles, más delicadas y esbeltas y con materiales más sofisticados. Por lo tanto poseen una gran variedad de frecuencias de vibración; estas frecuencias además, son gobernadas o están provocadas por multitud de fuentes activadoras de vibración distintas, que pueden variar en una amplio rango del espectro.

La vibración se podría definir de una forma elemental como el movimiento de vaivén de una máquina o elemento de la misma en cualquier dirección del espacio desde una posición teórica de equilibrio. En la mayoría de los casos la causa de las vibraciones reside en problemas mecánicos o influencias de los mismos; comenzando por el frecuencia fundamental que en la mayoría de los casos es la de desequilibrio de alguna de las partes móviles y continuando con la de desalineación entre los equipos que componen el sistema o entre partes de equipo, como la que se da entre mangones, entre engranes o entre rodamientos o cojinetes en línea, sin olvidar las holguras y pasando por problemas de engranajes desgastados o dañados, rodamientos deteriorado, fuerzas aerodinámicas, hidráulicas o eléctrico magnéticas, generadas a veces por desalineaciones entre las partes y diseños inapropiados, fallos en la lubricación o cavitaciones de varios tipos.

Viendo la cantidad y diferencia de las causas, podemos suponer que la misma variedad y complejidad existe en las fuerzas generadoras y producidas; fuerzas que cambian constantemente de dirección y de intensidad, cada una de ellas se puede y debe medir e interpretar con distintas características de la propia vibración, el desplazamiento, la velocidad, la aceleración, la fase, la frecuencia y la energía de impulsos con las medidas de spike energy o peak viu. Y los distintos modos de analizar las ondas complejas, análisis de onda, análisis de espectro, análisis orbital, comparación de fases, análisis del valor global y sus históricos etc.

¿Complejo? Sí, todo es muy complejo como para no admitir que el trabajo del analista de predictivo es muy complicado, y que por lo tanto no lo debe dejar en manos de cualquiera.

Terotecnic Ingeniería, lleva años dando confiabilidad en plantas para sus clientes y sus ingenieros de fiabilidad están formados al más alto nivel para dar soluciones claras y prolongar la vida útil de los equipos a su cargo.

Valoramos su aportaciones a este artículo, eso nos animará a seguir en nuestra linea de difusión. Muchas gracias

Continuará…

Guillermo Díaz Povedano
Guillermo Díaz Povedano

Director de Terotecnic Ingeniería, S.L.